Correction: Novel Genetic Variants of GA-Insensitive Rht-1 Genes in Hexaploid Wheat and Their Potential Agronomic Value
نویسندگان
چکیده
This study has found numerous novel genetic variants of GA-insensitive dwarfing genes with potential agricultural value for crop improvement. The cultivar, Spica is a tall genotype and possesses the wild-type genes of Rht-A1a, Rht-B1a and Rht-D1a. The cultivar Quarrion possesses a null mutant in the DELLA motif in each of the 3 genomes. This is a first report of a null mutant of Rht-A1. In addition, novel null mutants which differ from reported null alleles of Rht-B1b, Rht-B1e and Rht-D1b have been found in Quarrion, Carnamah and Whistler. The accession, Aus1408 has an allele of Rht-B1 with a mutation in the conserved 'TVHYNP' N-terminal signal binding domain with possible implications on its sensitivity to GA. Mutations in the conserved C-terminal GRAS domain of Rht-A1 alleles with possible effects on expression have been found in WW1842, Quarrion and Drysdale. Genetic variants with putative spliceosomal introns in the GRAS domain have been found in all accessions except Spica. Genome-specific cis-sequences about 124 bp upstream of the start codon of the Rht-1 gene have been identified for each of the three genomes.
منابع مشابه
Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat.
The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an incr...
متن کاملWhole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.)
The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated wi...
متن کاملMolecular Characterization of Three GIBBERELLIN-INSENSITIVE DWARF2 Homologous Genes in Common Wheat
F-box protein is a core component of the ubiquitin E3 ligase SCF complex and is involved in the gibberellin (GA) signaling pathway. To elucidate the molecular mechanism of GA signaling in wheat, three homologous GIBBERELLIN-INSENSITIVE DWARF2 genes, TaGID2s, were isolated from the Chinese Spring wheat variety. A subcellular localization assay in onion epidermal cells and Arabidopsis mesophyll p...
متن کاملExogenous GA3 Application Can Compensate the Morphogenetic Effects of the GA-Responsive Dwarfing Gene Rht12 in Bread Wheat
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, ...
متن کاملDominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1.
Dominance, semidominance, and recessiveness are important modes of Mendelian inheritance. The phytohormone gibberellin (GA) regulates many plant growth and developmental processes. The previously cloned semidominant GA-insensitive (GAI) genes Reduced height1 (Rht1) and Rht2 in wheat (Triticum aestivum) were the basis of the Green Revolution. However, no completely dominant GAI gene has been clo...
متن کامل